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Abstract. Differential Evolution (DE) is a simple yet powerful evolu-
tionary algorithm, whose performance highly depends on the setting of
some parameters. In this paper, we propose an adaptive DE algorithm
for multi-objective optimization problems. Firstly, a novel tree neighbor-
hood density estimator is proposed to enforce a higher spread between
the non-dominated solutions, while the Pareto dominance strength is
used to promote a higher convergence to the Pareto front. These two
metrics are then used by an original replacement mechanism based on
a three-step comparison procedure; and also to port two existing adap-
tive mechanisms to the multi-objective domain, one being used for the
autonomous selection of the operators, and the other for the adaptive
control of DE parameters CR and F. Experimental results confirm the
superior performance of the proposed algorithm, referred to as Adap-
MODE, when compared to two state-of-the-art baseline approaches, and
to its static and partially-adaptive variants.

Keywords: Multi-Objective Optimization, Differential Evolution, Tree
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1 Introduction

Differential Evolution, proposed by Storn and Price [15], is a popular and effi-
cient population-based, direct heuristic for solving global optimization problems
in continuous search spaces. The main benefits brought by DE are its simple
structure, ease of use, fast convergence speed and robustness, which enables it
to be widely applied to many real-world applications. For the generation of new
solutions (trial vectors), each individual (target vector) is combined with others
by means of different forms of weighted sums (mutation strategies). Originally, in
case the newly generated solution has a better fitness value than its correspond-
ing parent, it replaces its parent in the population for the next generation. The
aim of these iterations is basically to find a proper direction for the search pro-
cess towards the optimum, by following the quality distribution of the solutions
in the current population.
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One of the possible application domains of DE are the Multi-objective Opti-
mization Problems (MOPs), which exist everywhere in real-world applications,
such as engineering, financial, and scientific computing. The main difficulty in
these cases lies in providing a way to compare the different solutions, as the
involved multiple criteria might compete with one another, besides possibly not
being directly comparable. Multi-Objective Evolutionary Algorithms (MOEAs)
tackle this issue by searching for the set of optimal trade-off solutions, the so-
called Pareto optimal set: the aim is not only to approach the Pareto optimal
front as closely as possible, but also to find solutions that are distributed over
the Pareto optimal front as uniformly as possible, in order to better satisfy all
the different objectives considered. Needless to say, to be applied to MOPs, the
DE original scheme needs to be adapted according to the mentioned aims.

Many different types of DE variants proposed to tackle MOPs can be found
in the literature, such as GDE3 [12], and DEMO [17]. We refer the reader to
[2] for a recent comprehensive survey of DE, including its application to MOPs.
But the performance of DE largely depends on the definition of some parame-
ters. Besides the crossover rate CR, and the mutation scaling factor F, there is
the need of choosing which mutation strategies, from the many available ones,
should be used for the generation of new solutions, and at which rate each of the
chosen strategies should be applied. The setting of these parameters is usually a
crucial and very time-consuming task: the optimal values for them do not only
depend on the problem at hand, but also on the region of the search space that is
being explored by the current population, while solving the problem. Following
the intuition of the Exploration versus Exploitation (EvE) balance, exploration
tends to be more beneficial in the early stages of the search (consequently more
exploratory mutation strategies, high values for F and CR), while more exploita-
tion should be promoted when getting closer to the optimum (respectively, more
fine-tuning operators, and a smaller value for F).

A prominent paradigm to automate the setting of these parameters on-line,
i.e., while solving the problem, is the so-called Adaptive parameter control. It
constantly adapts the values of the parameters based on feedbacks received from
the search process. Some algorithms have been recently proposed for the on-line
adaptation of CR and F, and for the autonomous control of which of the strate-
gies should be applied at each instant of the search, the latter being commonly
referred to as Adaptive Operator Selection (AOS). Some DE algorithms using
adaptive methods can be found in the literature, such as SaDE [16], JADE [21],
jDE [1] and ISADE [11]. Regarding DE for MOPs, there also exists some pi-
oneering works, such as JADE2 [20] and OW-MOSaDE [10]. However, to the
best of our knowledge, the employment of both adaptive parameter control of
CR and F, and adaptive operator (mutation strategy) selection, is still relatively
scarce in the domain of MOPs.

In this work, we employ an adaptive parameter control of CR and F slightly
different from the one employed by the JADE method [21], which adapts their
values based on the recent success rate of the search process; and an AOS mech-
anism inspired from the PM-AdapSS-DE method [9], which uses the Probability
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Matching mechanism to select between the available mutation strategies, based
on the normalized relative fitness improvements brought by their recent appli-
cations. The main contribution of this work lies in the porting of these adaptive
methods to the multi-objective domain. More specifically, a novel method is pro-
posed to partially evaluate the fitness of the solutions, referred to as Tree Neigh-
borhood Density (TND) estimator. The aggregation of the TND with the Pareto
Dominance Strength (brought from the SPEA2 [23] method) is the information
used by the AOS mechanism to keep its operator preferences up-to-date, and by a
novel replacement mechanism based on a three-step comparison scheme. Lastly,
the output of this replacement mechanism defines the success rates used for the
adaptive parameter control of CR and F. The resulting algorithm, referred to as
Adaptive Multi-Objective DE (Adap-MODE), is assessed in the light of a set of
multi-objective benchmark functions, and shows to achieve significantly better
results than other state-of-the-art approaches (NSGA-II [4] and GDE3 [12]) and
than its static and partially-adaptive variants in most of the cases.

The remainder of this paper is organized as follows. Firstly, the background
and some related work are briefly reviewed in Section 2. Then, our proposed
algorithm is described in detail in Section 3. After that, some experimental
results are analyzed in Section 4. Finally, Section 5 concludes this paper and
gives possible directions for further work.

2 Related Work

The performance of an Evolutionary Algorithm (EA) strongly depends on the
setting of some of its parameters. Section 2.1 will briefly overview the different
ways of doing parameter setting in EAs, focusing on the kind of approach used
in this work, referred to as Adaptive Parameter Control. Then, Section 2.2 will
survey more specifically the Adaptive Operator Selection (AOS) paradigm.

2.1 Parameter Setting in Evolutionary Algorithms

There are different ways of doing parameter setting in EAs, as acknowledged by
the well-known taxonomy proposed by Eiben et al. in [6]. In the higher level,
there is the separation between Parameter Tuning and Parameter Control meth-
ods. Parameter Tuning methods set the parameters off-line, based on statistics
over several runs; besides being computationally expensive, it provides a single
parameter setting, that remains static during all the run. Parameter Control
methods continuously adapt the parameters on-line, i.e., while solving the prob-
lem; these methods are further sub-divided into three branches, as follows.

The Deterministic methods adapt the parameter values according to pre-
defined (deterministic) rules; but the definition of these rules already defines
a complex optimization problem per se, besides hardly adapting to different
problems. The Self-Adaptive methods adapt the parameter values for free, by
encoding them within the candidate solution and letting the evolution take care
of their control; in this case, however, the search space of the parameter values
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is aggregated to that of the problem, what might significantly increase the over-
all complexity of the search process. Lastly, the Adaptive methods control the
parameter values based on feedback received from the previous search steps of
the current optimization process.

In this work, we use an adaptive method very similar to the one proposed
in the JADE algorithm [21], which controls the values of DE crossover rate CR
and mutation scaling factor F based on the recent success rate (more details in
Section 3.4). Another example of adaptive method proposed for the same aim is
the SaDE [16] algorithm. Furthermore, another kind of adaptive method is also
used in our algorithm, the AOS, surveyed in the following.

2.2 Adaptive Operator Selection

A recent paradigm, referred to as Adaptive Operator Selection (AOS), proposes
the autonomous control of which operator (or mutation strategy in the case of
DE) should be applied at each instant of the search, while solving the problem,
based on their recent performance. A general AOS method usually consists of two
components: the Credit Assignment scheme defines how each operator should be
rewarded based on the impacts of its recent applications on the search progress;
and the Operator Selection mechanism decides which of the available operators
should be applied next, according to their respective empirical quality estimates,
which are built and constantly updated by the rewards received. Each of these
components will now be briefly overviewed in turn.

Credit Assignment
The most common way of assessing the impact of an operator application is the
fitness improvement achieved by the offspring generated by its application, with
respect to a baseline individual. In [9], the fitness improvement with respect to
its parent is considered, while [3] use as baseline individual the best individual
of the current population.

Based on this impact assessment, different ways of assigning credit to the
operators can be found, in addition to the common average of the recent fit-
ness improvements. In [19], a statistical technique rewards the operators based
on their capability of generating outlier solutions, arguing that rare but highly
beneficial improvements might be more important than frequent small improve-
ments. Along the same line, in [8] each operator is rewarded based on the extreme
(or maximal) fitness improvement recently achieved by it. In the quest for a more
robust rewarding, in [7] a rank-based scheme is proposed. In multi-modal prob-
lems, however, the diversity is also important; in [14], both diversity variation
and fitness improvement are combined to evaluate the operator application.

Operator Selection

The Operator Selection mechanism usually keeps an empirical quality esti-
mate for each operator, built by the received rewards, which is used to guide
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its selection. The most popular method for Operator Selection is referred to as
Probability Matching (PM) [18]: basically, the probability of selecting each oper-
ator is proportional to its empirical quality estimate with respect to the others;
this is the method used in this work, more details in Section 3.3.

Other more complex Operator Selection methods worth to be mentioned are:
the Adaptive Pursuit (AP) [18], originally proposed for learning automata, em-
ploys a winner-takes-all strategy to enforce a higher exploitation of the best
operator; and the Dynamic Multi-Armed Bandit (DMAB) [8], which tackles the
Operator Selection problem as yet another level of the Exploration vs. Exploita-
tion dilemma, efficiently exploiting the current best operator, while minimally
exploring the others, inspired from the multi-armed bandit paradigm.

3 Adaptive Multi-Objective DE

The general framework of the proposed adaptive Differential Evolution (DE)
algorithm for multi-objective problems is illustrated in Fig. 1. As can be seen,
it is divided into three modules. In the middle, there is the main cycle of the
DE algorithm, represented here by only three steps for the sake of brevity: once
after every generation, the fitness (see Section 3.1) of each offspring is evaluated
by the sum of its Pareto Dominance (PD) strength and its Tree Neighborhood
Density (TND). While the PD enforces convergence towards the Pareto front,
the TND promotes diversification between the non-dominated solutions. These
two measures are separately used by the Replacement mechanism, that decides
which of the individuals should be maintained for the next generation by means
of an original three-step comparison procedure (Section 3.2).

Fig. 1: The framework of the proposed adaptive Differential Evolution algorithm

Two adaptive mechanisms are employed in parallel. On the right side, there
is the AOS module, inspired from the PM-AdapSS-DE algorithm [9]. And on the
left side, there is the Adaptive Parameter Control module slightly modified from
the JADE algorithm [21]. Both adaptive mechanisms are described, respectively,
in Sections 3.3 and 3.4. Although these are adaptive mechanisms brought from
the literature, it is worth noting that in this work they are originally ported to
the multi-objective domain, by receiving inputs based on the special aggregation
between the PD and the novel TND measures.
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3.1 Fitness Evaluation

In multi-objective optimization, the aims of the search can be said to be two-
fold. On the one hand, the solutions found should approach as much as possible
to the Pareto front. On the other hand, the non-dominated solutions should
be distributed over the Pareto front as uniformly as possible, in order to have
satisfiable solutions for all the different objectives. In this work, we use the Pareto
Dominance (PD) strength proposed in the SPEA2 algorithm [23] to enforce the
first issue (convergence). For the second issue, we propose a novel measure to
promote spread between the non-dominated solutions, referred to as the Tree
Neighborhood Density (TND). The fitness of each individual is assessed by an
aggregation of these two criteria, as described in the following.

Pareto Dominance Strength
In order to calculate the Pareto Dominance (PD) strength, we use the mechanism
proposed in the SPEA2 algorithm [23]. The only difference is that the external
archive to store elite individuals is not implemented here. Briefly, a strength
value S(i) is assigned to each individual i in the population P , representing the
number of solutions it dominates. If solely based on this criterion, the fitness of
each individual i, referred to as PD(i) here, would be calculated as:

PD(i) =
∑

j∈P,j≻i

S(j) (1)

i.e., the sum of the strengths of all the individuals that dominate individual
i. Intuitively, the smaller the better, with PD(i) = 0 corresponding to a non-
dominated solution; whereas a large PD(i) means that the individual i is dom-
inated by many others.

Tree Neighborhood Density
As previously mentioned, the Tree Neighborhood Density (TND) is a novel esti-
mation proposed to enforce a higher level of spread between the non-dominated
solutions. For the sake of a clearer discussion, some definitions and terminologies
are firstly given as follows.

Definition 1 (Tree crowding density). Let T be a minimum spanning tree
connecting all the individuals of population P . For any individual i in P , let di

be the degree of i in T , i.e., the number of edges of T connected to i; and let
these edges be {li,1, li,2, . . . , li,di

}. The tree crowding density of i is estimated as:

Tcrowd(i) =

di∑

j=1

li,j/di (2)

Definition 2 (Tree neighborhood). Let ri = max{li,1, li,2, . . . , li,di
}. A circle

centered in individual i, with radius ri, is defined as the tree neighborhood of i.
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Definition 3 (Membership of individual on the tree neighborhood).
Let the Euclidean distance between individuals i and j be denoted as disti,j. The
individual j is considered as a member of the tree neighborhood of i if and only
if disti,j ≤ ri (denoted as i ⊲T j).

Based on these definitions, the calculation procedure for the Tree Neighbor-
hood Density (TND) is implemented as follows:

1. The Euclidean distance between each individual of the population P with
the other NP − 1 individuals is calculated;

2. A minimal spanning tree T connecting all individuals is generated;
3. The tree crowding density for each individual i in T is assessed, and the

corresponding tree neighborhood is generated;
4. For each individual i, the degrees of the individuals pertaining to its tree

neighborhood are summed:

sumdegrees(i) =
∑

j∈U

dj , where U = {j|j ∈ P, i ⊲T j} (3)

5. Then, the Tree Neighborhood Density of individual i is calculated as:

TND(i) =

∑
j∈U (1/T crowdj)

sumdegrees(i)
(4)

6. Finally, the TND values of all individuals are normalized:

nTND(i) =
TND(i) − TNDmin

TNDmax − TNDmin

. (5)

where nTND(i) is the normalized TND of individual i, and TNDmax and
TNDmin indicate, respectively, the maximum and minimum TND in the
current population.

In the same way as for the PD measure, the smaller TND the better. The
underlying motivation for its proposal can be explained as follows. The whole
set of solutions in the population can be regarded as a connected graph, with the
Euclidean minimum spanning tree of this graph being an optimized structure
that reflects the distribution of the solutions of the current population in the
search space. Then, for a given individual, the corresponding neighborhood can
be defined by the other individuals connected to it, and finally, the crowdedness
of this neighborhood can be said to represent its density.

Aggregated Fitness Evaluation
Based on the aforementioned discussion, the fitness value (to be minimized) of
each individual i is calculated as the sum of both criteria:

f(i) = PD(i) + nTND(i) (6)

It is worth noting that only the TND measure is normalized between 0 and 1.
Hence, evolution proceeds by firstly minimizing PD, i.e., approaching the Pareto
front; and then, as soon as some non-dominated solutions (i.e., with PD = 0)
are found, nTND becomes significant in the fitness evaluation, and a higher
spread between the non-dominated solutions is promoted.
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3.2 Replacement Mechanism

At each generation, each of the NP parental solutions is used to generate other
NP offspring solutions. In the original DE algorithm, the offspring replaces its
parent in the next generation if it has a better fitness value. In the case of multi-
objective optimization, a different replacement mechanism is needed in order to
incorporate the already mentioned properties of this kind of problem. To this
aim, a three-step comparison method is proposed in this work, as follows.

Starting from the mixed population of size 2 × NP , containing the NP
parental and the NP offspring individuals, firstly, the Pareto dominance re-
lationship is considered: each pair (parent, offspring) is compared at a time, and
the dominated one is immediately rejected.

In case the mixed population is still bigger than NP , the replacement mech-
anism proceeds to the second step, which uses the non-dominated sorting method
proposed in the NSGA-II algorithm [4]. Briefly, at each round, the non-dominated
individuals of the mixed population are chosen to survive to the next generation,
and are removed from the mixed population. This is done iteratively up to the
completion of the population for the next generation (i.e., NP chosen individuals
after the first and second steps), or until there are no less than NP individuals
with assigned rank values in the population.

If there are still individuals to be filtered for the next generation, the third
step finally considers the TND values. At each iteration, the individual that has
the lowest TND (i.e., the most crowded individual) is maintained, until the exact
number of individuals for the completion of the new population is achieved.

3.3 Adaptive Operator Selection

As surveyed in Section 2.2, to implement the AOS paradigm, there is the need
of defining two elements, the Credit Assignment and the Operator Selection
mechanisms. The approaches used in this work will be now detailed in turn.

Credit Assignment: Normalized Relative Fitness Improvement
The Credit Assignment scheme is inspired from the one used in the PM-AdapSS-
DE algorithm [9]; the differences are the use of a different and normalized calcu-
lation of the relative fitness improvements (which showed to perform better after
some preliminary experiments) and in the already described fitness evaluation,
specially designed for multi-objective optimization.

The impact of each operator application i is evaluated as the normalized
relative fitness improvement ηi achieved by it, measured as:

ηi =
|pfi − cfi|

|fbest − fworst|
(7)

where fbest (respectively fworst) is the fitness value of the best (respectively the
worst) solution in the current population; pfi and cfi are the fitness values of
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the (parent) target vector and its offspring, respectively. As in [9], in case no
improvement is achieved i.e., pfi − cfi ≥ 0, ηi is set to zero.

All the normalized relative fitness improvements achieved by the application
of operator (mutation strategy in this case) a ∈ {1, . . . , K} during each genera-
tion g are stored in a specific set Ra. Following [9], at the end of each generation
g, a unique credit (or reward) is assigned to each operator, calculated as the
average of all the normalized relative fitness improvements achieved by it:

ra(g) =

|Ra|∑

i=1

Ra(i)

|Ra|
· (8)

Operator Selection: Probability Matching
The Operator Selection mechanism used is the Probability Matching (PM) [18].
Formally, let the strategy pool be denoted by S = {s1, . . . , sK} where K > 1. The

probability vector P (g) = {p1(g), . . . , pK(g)}(∀t : pmin ≤ pi(g) ≤ 1;
∑K

i=1
pi(g) =

1) represents the selection probability of each operator at generation g. At the
end of every generation, the PM technique updates the probability pa(g) of each
operator a based on the received reward ra(g), as follows. Firstly, the empirical
quality estimate qa(g) of operator a at generation g is updated as [18]:

qa(g + 1) = qa(g) + α [ra(g) − qa(g)] (9)

where α ∈ (0, 1] is the adaptation rate; the selection probability is updated as:

pa(t + 1) = pmin + (1 − K · pmin)
qa(g + 1)

∑K

i=1
qi(g + 1)

. (10)

where pmin ∈ (0, 1) is the minimal selection probability value of each operator,
used to ensure that all the operators have a minimal chance of being selected.
The rationale for this minimal exploration is that the operators that are currently
performing badly might become useful at a further moment of the search [18].

3.4 Adaptive Parameter Control of CR and F

The parameter adaptation method used here is similar to that used in the JADE
algorithm [21]. Let CRa

i denote the crossover rate for the individual i using
operator a ∈ {1, . . . , K}. At each generation, CRa

i is independently generated
according to a normal distribution with mean µa

CR and standard deviation 0.1:

CRa
i = norm(µa

CR, 0.1) (11)

being regenerated whenever it exceeds 1. All successful crossover rates at gen-
eration g for operator a are stored in a specific set denoted as Sa

CR. The mean
µa

CR is initialized to a user defined value and updated after each generation as:

µa
CR = (1 − c) · µa

CR + c · mean(Sa
CR) (12)
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where c is a constant and mean(Sa
CR) is the arithmetic mean of values in Sa

CR.
An analogous adaptation mechanism is used for the scaling factor F a

i . After
some preliminary experiments, a difference with respect to the JADE algorithm
[21] at this point is that the mean value µa

F is calculated by the root-mean-square
of the values in Sa

F , instead of Lehmer mean.

4 Performance Comparison

In this section, three different empirical comparisons are presented. Firstly, the
proposed Adap-MODE is compared with two state-of-the-art MOEAs, namely,
NSGA-II [4] and GDE3 [12]. Then, in order to assess the benefits brought by
the combined use of both adaptive parameter control modules, Adap-MODE is
compared with four static variants, each using one of the four mutation strate-
gies and a fixed values for control parameters (CR = 0.5, F = 1.0). Lastly, we
compare Adap-MODE with its “partially-adaptive” variants, namely, the same
MODE but using only AOS (and CR = 0.5, F = 1.0), and the same MODE
but using only the adaptive parameter control of CR and F (and the mutation
strategies being uniformly selected). This latter is done in order to evaluate the
gain achieved by the combination of both modules, compared with each of the
modules being independently applied.

4.1 Experimental Settings

For the sake of a fair empirical comparison, the parameters of the two state-of-
the-art MOEAs are set as in the respective original papers. For the NSGA-II
[4], ηc = ηm = 20, pc = 0.9, pm = 1/D, with D representing the dimension of
the problem; and for GDE3 [12], CR = 0.5, F = 1.0. For the parameters of the
proposed Adap-MODE method, the PM adaptation rate is set to α = 0.3 and
minimal probability pmin = 0.05, as in [9]; and the parameter c for the adaptive
parameter control of CR and F is set to 0.1, as in [21], with CR and F being
both initialized to 0.2. Lastly, the DE population size is set to 100.

In this work, the AOS mechanism implemented in Adap-MODE is used to
select between the following four DE mutation strategies: (1) DE/rand/1/bin, (2)
DE/current-to-rand/1/bin, (3) DE/rand/2/bin, and (4) DE/rand-to-best/2/bin.
These are the same strategies used in some previous works [16, 9]; no theoretical
or empirical analysis was preliminary performed for their choice. It is worth
highlighting that the AOS scheme is generic: any other set of mutation strategies
could be considered here.

In order to compare the performance of the proposed and baseline approaches,
ZDT [22] and DTLZ [5] test suites are considered as benchmark functions. The
maximum number of generations is set to 300 for ZDT, and to 500 for DTLZ.

Two assessment metrics are used to quantitatively evaluate the performance
of each algorithm at the end of each run, averaged over 50 runs. The Uniform
Assessment (UA) metric [13] is used to evaluate the spread of the solutions,
while the Hyper-Volume (HV) [24] is a comprehensive performance indicator.
Generally, for the values of both UA and HV, the larger the better.
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4.2 Experimental Results

The comparative results, for each of the are presented in Tables 1 to 3. Follow-
ing the central limit theorem, we assume that the sample means are normally
distributed; therefore, the paired t-test statistical test at 95% confidence level
is adopted to compare the significance between two competing algorithms, with
the † indicating that Adap-MODE is significantly better than all its competitors
in the corresponding Table, and ‡ representing that the best competitor signifi-
cantly outperforms Adap-MODE. Moreover, the best results for each metric on
each problem function are highlighted in boldface.

Starting with the comparison between Adap-MODE and the two state-of-the-
art MOEAs, namely NSGA-II and GDE3, the results are presented in Table 1.
These results clearly show that Adap-MODE is the best choice when compared
to its competitors: it achieves the best results in 23 out of the 24 performance
metrics, performing significantly better in 22 of them. The only exception is
for the UA metric in the DTLZ4 problem, in which NSGA-II wins. It is worth
noting that Adap-MODE performs around two times better than its competitors
w.r.t. the uniformity metric UA in most of the functions, what might be largely
attributed to the use of the proposed tree neighborhood density estimator by
the fitness assignment.

Table 2 compares the performance of Adap-MODE with four static variants of
it, each using one of the four available mutation strategies, without any adaptive
parameter control. From these results, it becomes clear that there is no single
mutation strategy that is the best over all the functions. For example, for the
ZDT2 function, strategy 2 is the best in terms of HV, while strategy 1 is the
winner for ZDT3. It is also worth noting that strategy 4 performs worst, while
strategies 1 and 3 are the most competitive ones. This kind of situation motivates
the use of the AOS paradigm. And indeed, Adap-MODE remains the best option
in most of the functions, while achieving very similar performance in others.

The last comparative results, shown in Table 3, presents the performance of
Adap-MODE compared with its “partially”-adaptive variants, one using only
the AOS, and the other using only the adaptive parameter control of CR and
F. From these results, it is not clear which of the adaptive modules is the most
beneficial for the performance of Adap-MODE: at some functions, the “AOS
only” method is better than the “parameter control only” one, while in others
the opposite occurs. But these results clearly demonstrate that the combined
use of both adaptive modules is better than their sole use, what is shown by the
fact that Adap-MODE significantly outperforms them in most of functions, in
terms of both UA and HV.

5 Conclusion

In this paper, we propose a new DE algorithm for multi-objective optimization
that uses two adaptive mechanisms in parallel: the Adaptive Operator Selection
mechanism, to control which operator should be applied at each instant of the
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Table 1: Comparative results of NSGA-II, GDE3 and Adap-MODE

NSGA-II GDE3 Adap-MODE S

ZDT1
UA 4.433e-1/3.56e-2 2.359e-1/4.42e-2 8.080e-1/1.62e-2 †

HV 3.65960/3.00e-4 3.65990/3.55e-4 3.66193/3.15e-5 †

ZDT2
UA 4.391e-1/4.68e-2 2.551e-1/4.98e-2 8.069e-1/1.89e-2 †

HV 3.32618/3.21e-4 3.32673/3.06e-4 3.32853/4.19e-5 †

ZDT3
UA 4.252e-1/4.49e-2 2.069e-1/4.17e-2 7.660e-1/1.98e-2 †

HV 4.80650/5.13e-2 4.81433/1.95e-4 4.81463/4.81e-4 †

ZDT4
UA 4.173e-1/4.69e-2 2.403e-1/4.64e-2 8.055e-1/1.85e-2 †

HV 3.65413/4.04e-3 3.63033/1.84e-1 3.66201/5.33e-4 †

ZDT6
UA 4.529e-1/4.86e-2 2.226e-1/4.67e-2 7.896e-1/2.27e-2 †

HV 3.03090/1.51e-3 3.04029/2.67e-4 3.04183/1.62e-5 †

DTLZ1
UA 3.742e-1/4.44e-2 5.256e-1/3.58e-2 8.246e-1/1.48e-2 †

HV 0.967445/1.95e-3 0.965469/9.45e-4 0.973582/2.75e-4 †

DTLZ2
UA 3.688e-1/3.78e-2 4.868e-1/3.30e-2 8.236e-1/1.84e-2 †

HV 7.33017/2.70e-2 7.31392/9.05e-3 7.40523/1.14e-2 †

DTLZ3
UA 3.353e-1/7.92e-2 4.857e-1/4.09e-2 8.304e-1/1.72e-2 †

HV 6.41853/1.80e+0 5.85267/2.37e+0 7.32465/5.76e-1 †

DTLZ4
UA 4.404e-1/9.19e-2 2.532e-1/3.91e-2 2.654e-1/2.99e-2 ‡

HV 6.90792/7.55e-1 5.46000/1.10e+0 7.02943/5.46e-1 †

DTLZ5
UA 3.930e-1/4.63e-2 4.379e-1/3.85e-2 7.866e-1/1.82e-2 †

HV 6.10048/1.42e-3 6.08543/1.83e-3 6.10548/4.40e-3

DTLZ6
UA 2.939e-1/5.19e-2 2.652e-1/4.33e-2 7.759e-1/2.18e-2 †

HV 5.86932/7.09e-2 6.10187/2.12e-3 6.10732/4.88e-3 †

DTLZ7
UA 4.102e-1/3.96e-2 4.491e-1/3.70e-2 7.723e-1/1.86e-2 †

HV 13.15151/8.55e-2 13.19772/9.29e-2 13.46486/7.43e-2 †

search; and the Adaptive Parameter Control, that adapts the values of the DE
parameters CR and F while solving the problem. A tree neighborhood density
estimator is proposed and, combined with the Pareto dominance strength mea-
sure, is used in order to evaluate the fitness of each individual. Additionally,
a novel replacement mechanism is proposed, based on a three-step comparison
procedure. As a consequence, the adaptive methods employed by the proposed
algorithm, inspired from recent literature, are originally ported to the multi-
objective domain.

Numerical experiments demonstrate that the proposed Adap-MODE is ca-
pable of efficiently adapting to the characteristics of the region that is currently
being explored by the algorithm, by efficiently selecting appropriate operators
and their corresponding parameters. Adap-MODE is shown to outperform two
state-of-the-art MOEAs, namely NSGA-II [4] and GDE3 [12], in most of the
functions. It also performs significantly better, in most of the functions, than
the same MODE with static parameters, and than the partially-adaptive vari-
ants using each of the two adaptive modules.

But there is still a lot of space for improvements. Firstly, for the fitness
evaluation, more sophisticated schemes to control the balance between both
convergence and spread could be analyzed. Regarding the AOS implementation,
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Table 2: Comparative results of Adap-MODE and its pure versions, following the same
order of the problems as in Table 1

Str.1 Str.2 Str.3 Str.4 Adap-MODE S

UA 7.9e-1/1.9e-2 7.9e-1/1.9e-2 7.4e-1/2.6e-2 4.1e-1/5.2e-2 8.1e-1/1.6e-2 †

HV 3.662/3.4e-5 3.662/3.4e-5 3.656/2.2e-3 1.902/3.9e-1 3.662/3.1e-5

UA 7.9e-1/1.5e-2 8.0e-1/1.9e-2 7.2e-1/2.7e-2 3.6e-1/6.3e-2 8.1e-1/1.9e-2
HV 3.328/3.4e-5 3.328/3.9e-5 3.319/4.6e-3 1.905/2.4e-1 3.328/4.2e-5 ‡

UA 7.7e-1/2.1e-2 7.5e-1/2.7e-2 5.1e-1/8.0e-2 3.4e-1/2.7e-2 7.6e-1/1.9e-2
HV 4.815/6.4e-5 4.814/1.6e-3 4.775/1.3e-2 1.781/3.4e-1 4.814/4.8e-4 ‡

UA 8.1e-1/1.7e-2 8.0e-1/1.6e-2 8.0e-1/1.9e-2 3.3e-1/3.9e-2 8.0e-1/1.8e-2
HV 3.636/1.0e-1 3.662/3.8e-5 3.649/8.6e-2 0.0/0.0 3.662/5.3e-4

UA 7.9e-1/1.9e-2 8.1e-1/2.0e-2 8.2e-1/1.9e-2 7.6e-1/4.6e-2 7.9e-1/2.2e-2 ‡

HV 3.042/1.7e-5 3.042/2.4e-5 3.042/1.5e-5 3.041/3.1e-3 3.042/1.6e-5

UA 8.3e-1/2.1e-2 8.2e-1/1.7e-2 8.2e-1/1.5e-2 4.7e-1/4.3e-2 8.2e-1/1.5e-2
HV 0.97/1.0e-3 0.97/5.6e-4 0.969/7.1e-4 0.0/0.0 0.973/2.7e-4 †

UA 8.1e-1/1.8e-2 8.0e-1/2.0e-2 8.0e-1/1.9e-2 7.9e-1/2.5e-2 8.2e-1/1.8e-2
HV 7.348/1.4e-2 7.337/1.4e-2 7.335/7.8e-3 7.303/8.8e-3 7.405/1.1e-2 †

UA 8.0e-1/1.8e-2 3.5e-1/3.9e-2 3.4e-1/3.2e-2 4.0e-1/3.9e-2 8.3e-1/1.7e-2 †

HV 6.538/2.0 0.0/0.0 0.0/0.0 0.0/0.0 7.324/5.7e-1 †

UA 2.5e-1/3.8e-2 2.4e-1/3.3e-2 2.5e-1/3.0e-2 2.3e-1/3.0e-2 2.6e-1/2.9e-2 †

HV 5.58/1.1 6.639/4.8e-1 6.359/7.7e-1 5.971/1.1 7.029/5.4e-1 †

UA 7.4e-1/2.2e-2 7.2e-1/2.3e-2 7.2e-1/2.1e-2 7.3e-1/2.8e-2 7.8e-1/1.8e-2 †

HV 6.073/3.4e-3 6.067/3.4e-3 6.065/3.9e-3 6.052/5.3e-3 6.105/4.4e-3 †

UA 7.9e-1/2.0e-2 7.9e-1/2.1e-2 7.9e-1/1.7e-2 7.6e-1/2.5e-2 7.7e-1/2.2e-2 ‡

HV 6.107/4.4e-3 6.106/4.2e-3 6.108/5.4e-3 5.764/1.0 6.107/4.9e-3

UA 7.6e-1/1.8e-2 7.7e-1/1.6e-2 7.4e-1/2.2e-2 5.1e-1/1.3e-1 7.7e-1/1.8e-2
HV 13.412/5.6e-2 13.427/4.8e-2 13.346/7.3e-2 7.735/3.7 13.46/7.4e-2 †

other schemes have already shown to perform better than PM in the literature
and should also be analyzed in the near future, such as the Adaptive Pursuit
[18] and the Dynamic Multi-Armed Bandit [8]; a more recent work, that also use
bandits, reward the operators based on ranks [7], thus achieving a much higher
robustness w.r.t. different benchmarking situations. In the same way, there are
different alternatives for the adaptive parameter control of CR and F that could
be further explored.

Another issue that deserves further exploration is related to the (hyper) pa-
rameters of the adaptive modules. In the case of Adap-MODE, the AOS requires
the definition of the adaptation rate α and the minimum probability pmin, while
the adaptive parameter control requires the setting of c. In this work, these
parameters were set as in the original references, but further analysis of their
sensitivity should be done. Ideally, Adap-MODE and the other methods used as
baseline should also be all compared again, after a proper off-line tuning phase.
Another important baseline would be the same MODE with off-line tuned CR,
F, and mutation application rates.

Lastly, the extra computational time resulting from the use of these adaptive
schemes should be further analyzed; although it is true to say that, in real-world
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Table 3: Comparative results of Adap-MODE, Adap-MODE with AOS only and Adap-
MODE with parameter control only

CR/F(fixed)+AOS CR/F(adapt.)+Unif.OS Adap-MODE S

ZDT1
UA 7.860e-1/2.08e-2 7.851e-1/2.42e-2 8.080e-1/1.62e-2 †

HV 3.66162/2.97e-4 3.66066/2.69e-4 3.66193/3.15e-5 †

ZDT2
UA 7.809e-1/2.02e-2 7.793e-1/1.71e-2 8.069e-1/1.89e-2 †

HV 3.32840/3.13e-4 3.32612/5.27e-4 3.32853/4.19e-5 †

ZDT3
UA 7.538e-1/2.83e-2 7.487e-1/1.52e-2 7.660e-1/1.98e-2 †

HV 4.81448/1.18e-3 4.81228/1.18e-3 4.81463/4.81e-4

ZDT4
UA 8.127e-1/2.30e-2 7.486e-1/6.12e-2 8.055e-1/1.85e-2
HV 3.64150/1.43e-1 3.65409/4.26e-2 3.66201/5.33e-4 †

ZDT6
UA 7.626e-1/2.34e-2 8.078e-1/2.34e-2 7.896e-1/2.27e-2 ‡

HV 3.04179/3.22e-5 3.04183/4.93e-5 3.04183/1.62e-5

DTLZ1
UA 8.247e-1/1.80e-2 8.200e-1/1.73e-2 8.246e-1/1.48e-2
HV 0.969925/5.41e-4 0.917842/1.25e-1 0.973582/2.75e-4 †

DTLZ2
UA 8.096e-1/2.01e-2 8.224e-1/1.56e-2 8.236e-1/1.84e-2
HV 7.33762/1.10e-2 7.40368/9.20e-3 7.40523/1.14e-2

DTLZ3
UA 6.365e-1/1.44e-1 8.289e-1/1.42e-2 8.304e-1/1.72e-2
HV 7.13704/3.70e-1 4.59535/2.92e+0 7.32465/5.76e-1 †

DTLZ4
UA 2.092e-1/3.32e-2 9.814e-2/4.33e-3 2.654e-1/2.99e-2 †

HV 6.78321/6.03e-1 4.66216/1.09e+0 7.02943/5.46e-1 †

DTLZ5
UA 7.334e-1/2.26e-2 7.792e-1/1.95e-2 7.866e-1/1.82e-2 †

HV 6.07005/3.69e-3 6.10649/3.78e-3 6.10548/4.40e-3

DTLZ6
UA 7.739e-1/2.32e-2 7.876e-1/2.00e-2 7.759e-1/2.18e-2 ‡

HV 6.10841/5.67e-3 6.10640/4.14e-3 6.10732/4.88e-3

DTLZ7
UA 7.621e-1/1.83e-2 7.634e-1/1.70e-2 7.723e-1/1.86e-2 †

HV 13.42436/6.19e-2 13.43145/7.25e-2 13.46486/7.43e-2 †

problems, the fitness evaluation is usually the most computationally expensive
step, all the rest becoming negligible.
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